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Abstract. Spatial patterns are a significant characteristic of lasers. The knowledge of spatial patterns of
structured laser beams is rapidly expanding, along with the progress of studies on laser physics and tech-
nology. Particularly in the last decades, owing to the in-depth attention on structured light with multiple
degrees of freedom, the research on spatial and spatiotemporal structures of laser beams has been promptly
developed. Such beams have hatched various breakthroughs in many fields, including imaging, microscopy,
metrology, communication, optical trapping, and quantum information processing. Here, we would like to
provide an overview of the extensive research on several areas relevant to spatial patterns of structured laser
beams, from spontaneous organization to multiple transformations. These include the early theory of beam
pattern formation based on the Maxwell–Bloch equations, the recent eigenmodes superposition theory based
on the time-averaged Helmholtz equations, the beam patterns extension of ultrafast lasers to the spatio-
temporal beam structures, and the structural transformations in the nonlinear frequency conversion process
of structured beams.
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1 Introduction
Since their introduction 60 years ago,1 lasers with various char-
acteristics have developed rapidly, making them important light
sources in various fields ranging from scientific research2–4

to industrial production.5–8 Almost all the characteristics of
a laser can be classified as temporal,9–14 spatial,15–18 or spectral
domain.19–23 Over the past few decades, much interest has been
given to laser properties in the temporal and spectral domains,
while the spatial properties of laser beams seem to be relatively

less emphasized. In the last 10 to 20 years, as a result of the
emergence of research on spatial characteristics of laser beams,
especially, the orbital angular momentum (OAM), much more
attention has been paid to structured laser beams with distinct
spatial or spatiotemporal structures. Such beams have brought
various breakthroughs to many fields, including imaging,24,25

microscopy,26,27 metrology,28–30 communication,31–33 optical trap-
ping,34–36 and quantum information processing.37–39 In the most
recent five years, the number of reviews on structured light has
boomed, with the majority of reviews focusing on technical-
level research into the phenomenon,40–54 such as the generation
and detection technology of structured light,44,45 application in
the field of optical trapping46,47 and anti-turbulence,48 progress
in optical vortices49–51 and higher-dimensional structured light,52
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as well as research on structured light in flat optics53 and non-
linear optics.54 In contrast, there have been few studies on the
evolution of the investigations and corresponding understand-
ings of the pattern formation of structured laser beams. Here,
we would like to take the spatial patterns as the main core to
review the evolution and recent advancement on spatial patterns
of structured laser beams, from the early spontaneous organiza-
tion with numerical solutions of mathematical equations and
eigenmode superposition theories to the multiple transforma-
tions of the spatiotemporal dimensions and nonlinear process of
structured laser beams.

The research on spatial patterns of structured laser beams
went through two periods: the first was the spontaneous organi-
zation of patterns described by relative equations, while the
second was the transformation of laser patterns on demand.
Although there is no distinct separation between these two peri-
ods, it is noticeable that over the past 10 years, we have steadily
gained a better understanding of how diverse laser spatial pat-
terns originate and developed several effective techniques for
producing spatial patterns on demand. Research on the forma-
tion of structured laser patterns was a main focus in physics
from the 1960s to 1990s.55–69 The earliest research at that time
combined Maxwell’s equations69 with Schrödinger’s equation,70

leading to the laser amplitude E coupled with the collective
variables P and D for the atomic polarization and population
inversion to describe the transverse mode formation.71 This
set of equations is called the MB equations.62,72 Then, on the
basis of the MB equations, which are a set of spatiotemporal
multivariate nonlinear partial differential equations, the pattern
formation characteristics of class A, B, and C lasers were
successively studied.68,71 The relevant equations are then further
developed, and equations, such as the complex Ginzburg–
Landau (CGL),73,74 complex Swift–Hohenberg (CSH),75,76 and
Kuramoto–Sivashinsky (KS)77–80 equations were further derived.
Through the numerical solution of these equations, the forma-
tion of laser transverse patterns under specific parameters can be
analyzed. In addition, with time and space terms involved, these
equations can explain both the spatial and temporal character-
istics of the patterns in some cases, including stability, oscilla-
tion, chaos, and so on.81–83 However, most of these patterns are
ideal cases obtained under the condition of a single transverse
mode of the laser.62 If multiple transverse modes with different
frequencies are involved, it would be hard to analyze the
results of multifrequency interaction through these equations.
Therefore, in the study of pattern formation in the last 20 years,
the analysis is often carried out through the applications of a
set of eigenmode superposition theories.84–89 This set of theories
mainly studies the spatial structure characteristics of the pat-
terns. The basis of eigenmode superposition theory is the fun-
damental composed modes, such as Hermite–Gaussian (HG),
Laguerre–Gaussian (LG), and Ince–Gaussian (IG) modes,
obtained by solving the Helmholtz equations,90–96 except with
space terms and without time terms. Then, according to the spe-
cific laser cavity conditions and field distributions of the output
pattern, it could be analyzed whether coherent or incoherent
superposition of the fundamental modes is generated through
the eigenmode superposition theory. This involves the concept
of transverse mode locking (TML),97–99 namely, to lock the
phase100,101 or frequency of several transverse modes to obtain
the output beam. The cooperatively frequency-locked multi-
mode regime, in which at least two transverse modes contribute
significantly to the output field, lock to a common frequency

with which they oscillate in a synchronized way. The locking
concerns also the relative phases of the modes, so that the output
intensity has a stationary transverse configuration. The patterns
formed by the TML effect could possess phase singularities in
dark points.102 The theory of eigenmode superposition can also
explain the formation of high-order complex transverse modes
and optical vortex lattices (OVLs).87–89

For the second period of on-demand transformation of laser
patterns, a number of techniques have been developed in the
past 20 years to actively control the generation and transforma-
tion of laser beam patterns, giving rise to a better understanding
of the spatial features of lasers. Numerous review articles on
the actively controlled generation of structured laser patterns,
using both intracavity oscillation40,41 and extracavity spatial
modulation methods, are readily available.42–45 The studies on
the transformations of structured laser beams are mostly under
the premise of single longitudinal mode. However, if multiple
longitudinal modes are involved, the time dimension is sup-
posed to be reconsidered. Recently, research on spatiotemporal
beams has sprung up.103–114 The direct generation of spatiotem-
poral beams involves the principle of spatiotemporal mode lock-
ing, i.e., locking the laser longitudinal and transverse modes
at the same time to form ultrashort pulses with special spatial
intensity distribution.103 Spatiotemporal mode locking is often
obtained in fiber lasers, which realizes TML with the help of
spatial filtering,107,115 and longitudinal mode locking with the
help of normal-dispersion mode-locking principle116,117 and a
saturable absorber. The spatiotemporal mode-locking beam
opens up a new direction for the propagation and application
of nonlinear waves. However, the spatiotemporal mode-locking
beams produced directly by fiber lasers often have irregular
intensity distributions. To obtain regular and more complex
spatiotemporal beams, a pulse shaper based on spatial light
modulator (SLM) is applied, which can generate specific spa-
tiotemporal optical vortices,118–120 spatiotemporal Airy beams,121

spatiotemporal Bessel beams,122 and so on.123–126 Another
method for actively controlling the generation and transforma-
tion of structured laser beams is using nonlinear processes.
Combining nonlinear frequency conversion with the genera-
tion of structured laser beams, the beam patterns of harmonic
waves are found to be endowed with much richer spatial in-
formation. Through nonlinear frequency conversion of struc-
tured laser beams, the beam pattern transformations in sum
frequency generation (SFG),127–130 second-harmonic generation
(SHG),131–140 four-wave mixing (FWM),141,142 and other fre-
quency upconversion143–145 processes are carried out. Usually,
these studies first generate structured beams with the help of
modulation devices (such as SLM), and then carry out nonlinear
conversion, which belongs to the external cavity nonlinear pro-
cess of structured laser beams. Meanwhile, for the intracavity
nonlinear process of structured laser beams, some studies also
showed similar properties, while more complex and diverse
beam patterns can be obtained.146–150

The timeline of the evolution on spatial patterns of structured
laser beams is shown in Fig. 1. In this review, we highlight the
developments in laser spatial pattern studies with the emphasis
on the spontaneous organization of pattern formation and the
multiple transformations of laser spatial patterns. The original
descriptive equations in the field of pattern formation are intro-
duced in Sec. 2, including MB, CGL, CSH, and KS equations,
which are fundamental to understanding the dynamics of pattern
formation. Then, the current theories in the past 20 years are
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further discussed in Sec. 3, namely, the eigenmode superposi-
tion theories. The superposition of transverse modes brings
a new vision in understanding laser physics and recognizing
the vast possibilities for structured laser beam patterns. Results
are analyzed and compared, covering coherent superpositions
and incoherent superpositions. Then, in Sec. 4, more potential
developments are forecast in spatiotemporal laser beams, par-
ticularly in spatiotemporal mode locking in fiber lasers and
spatiotemporal beams generated through pulse shapers based
on SLM. In Sec. 5, various nonlinear processes of structured
laser beams from external–cavity modulations to intracavity
transformation are comprehensively reviewed. Finally, conclud-
ing remarks and prospects are provided in Sec. 6.

2 MB Equations-Based Pattern Formation
Pattern formation is a ubiquitous phenomenon in nature and
a phenomenon often found in laboratories; it was regarded as
the spontaneous appearance of spatial order.150 Generally, all
the patterns have something in common: they appear in spatially
expanding dissipative systems, which are far from equilibrium
because of some external pressure. In optical systems, the
mechanism of pattern formation is the interaction among
diffraction, partial resonance excitation, and nonlinearity.
Diffraction is responsible for spatial coupling, which is neces-
sary for the existence of nonuniform distribution of light fields.
The role of nonlinearity is to select a specific pattern from

Fig. 1 Timeline of the evolution on spatial patterns of structured laser beams.
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several possible patterns. After reducing a specific model
into a simpler model, a common theoretical model describing
pattern formation is found to be the order parametric equation
(OPE).150,151 Then, in the study of pattern formation in structured
laser systems, the problem was precisely addressed through
the description of optical resonators by OPE, which reflects the
general characteristics of laser transverse patterns.

The exploration of the OPE of laser spatial pattern formation
can be traced back to the 1970s.55–57 By simplifying the laser
equations for the class A case to the CGL equation, the relation-
ship between superfluid and laser dynamics was established. In
view of this common theoretical description, it was expected
that the dynamics of pattern formation in lasers and the dynam-
ics of superfluidity would show identical features.53 Then, in the
late 1980s57–60 and 1990s,61–64,66 the formation of optical trans-
verse modes began to be an interesting topic for scientists in
MB equation field theory.

It was found that if the Maxwell equations69 and the
Schrödinger equation70 are coupled to constrain the N atoms
in the cavity and expand the field in the cavity mode, then
the amplitude E is coupled with atomic polarization P and
population D.71 The set of equations is called the MB equation
system, which is also the earliest manifestation of passive
systems.152 When extended to the laser system, the dynamic
of the electromagnetic field in the cavity with a planar end mir-
ror should be considered, and the planar end mirror accommo-
dates two-energy-level atoms as an active medium. The form of
the MB equation becomes628>><>>:

∂E
∂t ¼ −ðiωc þ κÞEþ κPþ idκ∇2E
∂P
∂t ¼ −γ⊥Pþ γ⊥ED

∂D
∂t ¼ −γ∏

h
ðD −D0Þ þ 1

2
ðE�Pþ P�EÞ

i ; (1)

where E is the field amplitude; P is the atomic polarization
intensity; D is the population intensity; κ, γ⊥, and γ∏ are the
corresponding relaxation rates; ωc is the cavity resonance
frequency; and d is the diffraction coefficient. The system of
Eq. (1) determines the behavior of the restricted electromagnetic
field E in the transverse plane, which explains the formation
mechanism of the transverse mode at the atomic level. Here,
ðx; yÞ is a plane perpendicular to the z axis of the cavity, and
it is assumed that E and P have the best plane wave dependence
in the z direction and the slow residual dependence on the lateral
variables x and y. They directly follow the Maxwell equations of
the field E together with the Bloch equations of complex atomic
polarization P and population N. Numerically solving the MB
equations, the laser transverse patterns observed in solid-state
lasers are shown in Figs. 2(a) and 2(b).

By observing the form of the MB Eq. (1), it can be found that
they are similar to the Lorentz model describing hydrodynamic
instability.154 The similarity between the Lorentz model and
the MB equations implies that chaotic instability can happen in
single-mode and homogeneous line lasers. However, the consid-
eration of time scale excludes the complete dynamics of Eq. (1)
in lasers. In the Lorentz model, the damping rates differ by
1 order of magnitude from each other. On the contrary, in most
lasers, the three damping rates of the MB equations are different
from each other. Then, according to the relationship among the
three damping rates κ, γ⊥, and γ∏, the MB equations can be
transformed into different forms under specific laser conditions,

which can describe both pattern formation and time-domain
properties.71

For class A lasers (e.g., He–Ne, Ar, Kr, and dye):
γ⊥ ≈ γ∏ ≫ κ, the polarization and the population inversion
of the atom can be adiabatically eliminated; hence the system
is only described by one field equation. The equation can be
simplified to the CGL equation, which is also the governing
equation in superconductors and superfluids. Therefore, the last
two equations of Eq. (1) are eliminated, leaving only the non-
linear equation representing the field amplitude E as follows:74

∂E
∂τ ¼ ðD0 − 1ÞE − iðβ − d∇2ÞE − gðβ − d∇2Þ2E − EjEj2;

(2)

where τ is the scaled time. Equation (2) retains all the ingre-
dients of spatial pattern formation in lasers. One important prop-
erty of the radiation in lasers is its diffraction, which is explained
by the second term on the right-hand side of Eq. (2). The third
term on the right-hand side of Eq. (2) describes the spatial fre-
quency (transverse mode) selection, a phenomenon essential for
the correct description of narrow-gain-line lasers. In many such
lasers, the selection of transverse modes is possible by tuning
the length of the resonator. Then, the first and last terms on
the right-hand side of Eq. (2) give the normal form of a super-
critical Hopf bifurcation. When the control parameter D0 − 1
goes through zero, a bifurcation occurs, characterized by a fixed
amplitude but an arbitrary phase.

For class B lasers (e.g., ruby, Nd, and CO2): γ⊥ ≫ γ∏ ≈ κ,
only the polarization intensity can be adiabatically eliminated.
Then, its dynamic behavior is described by two coupled non-
linear equations corresponding to the light field and the popu-
lation as follows:76( ∂E

∂τ ¼ ðD − 1ÞE − iðβ − d∇2ÞE − gðβ − d∇2Þ2E
∂D∂τ ¼ −γ∏½ðD −D0Þ þ jEj2D� : (3)

The first equation of Eq. (3) is the CSH dissipation equation
suitable for class B lasers, where the higher-order diffusion term
explains the choice of transverse modes. Comparing Eqs. (2)
and (3), it can be found that in Eq. (3), the population D is
the recovery variable and the fast light field E is the excitable
variable. The overall particle inversion speed is slow, and the
CSH equation contains additional nonlocal terms responsible
for spatial mode selection, which will lead to the instability of
pattern formation.

For class A and class B lasers, the output is stable in the ab-
sence of external disturbances. To realize an unstable operation,
at least one degree of freedom needs to be added. The usual
methods are as follows:155–157 (1) modulate a certain parameter,
such as the external field, pump rate, or cavity loss, to make
the system a non-self-consistent equation system [Fig. 2(c)];
(2) inject the external field to increase the degrees of freedom
of the system; (3) apply a two-way ring laser. In this case, the
two backpropagating modes are coupled to each other, so that
the number of degrees of freedom of the system is greater than
two. Moreover, under the same conditions, observing the pattern
formation of class B lasers will reveal two phenomena: periodic
dynamics and low-dimensional deterministic chaos76 [Fig. 2(e)].
Accordingly, fixed patterns and weak turbulence are the char-
acteristics of class A laser output patterns74 [Fig. 2(d)].
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In addition, Huyet et al.77 used multi-scale expansion to de-
rive the CSH equation of the laser. They obtained two fields’
equations: one is mainly caused by the phase fluctuations of
the KS equation called the turbulent state,158 while the other
CSH equation produces periodic modulation in spatial and
temporal intensities. The reason that the laser intensity is locally
chaotic is explained by this system of equations, while the time-
averaged intensity pattern maintains the overall symmetry of the
system. The time-domain dynamics of laser pattern formation
were further studied by Chen and Lan.153,159 The ring beam
distributed pumping technology is used to obtain the high-order
LG0;l pattern. By slightly adjusting the spherical output cou-
pling mirror, i.e., controlling the frequency difference ΔΩ of
the two LG0;l patterns, the relationship between ΔΩ and the
relaxation oscillation frequency ωr of the solid-state laser is
constantly changing, accounting for the different time-domain
properties [Fig. 2(f)].

In summary, the derivation and deformation of the MB equa-
tions have laid the physical foundation for the spontaneous

organization of spatial patterns of structured laser beams. The
formation of one-dimensional (1D) and two-dimensional (2D)
spatial patterns can be explained by solving the MB equations
and its modified CGL, CSH, and KS equations under specific
conditions. In addition, since the MB equations are a system of
multivariate nonlinear equations in space and time, the time-
domain properties of certain cases in laser pattern formation,
such as stability, oscillation, and chaos, can also be described.

3 Eigenmode Superposition-Based Pattern
Formation

Since structured laser beams often appear as time-averaged pat-
terns in practical applications,76,77,86 their spatial characteristics
have received much attention in recent years. Here, we should
refer to the Helmholtz equation,90–96 which is the basic wave
equation that the electric vector of optical frequency electromag-
netic field should satisfy under the scalar field approximation.
Generally, both the Helmholtz equation and MB equations can

Fig. 2 Pattern formation and time-domain properties of classes A and B lasers in specific cases.
(a) Laser transverse patterns are obtained by numerically solving the MB equations. Adapted from
Ref. 84. (b) Laser OL patterns with different Fresnel numbers. Adapted from Ref. 85. (c) 1D non-
stationary periodic (c1) and chaotic (c2) pattern in class A lasers when the pump gain is too high.
Adapted from Ref. 74. (d) 2D stationary pattern in class A lasers. (e) 2D transient nonstationary
pattern (e1) and time-averaged stationary pattern (e2) in class B lasers. (d)–(e) Adapted from
Ref. 76. The corresponding principle between (e1) and (e2) was discussed in Ref. 77. (f) Different
time-domain properties of laser pattern formation: self-modulated periodic oscillation (f1), self-
modulated quasi-periodic oscillation (f2), chaotic pulsing (f3), and single-mode stable pattern (f4).
Adapted from Ref. 153.
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describe the formation dynamics of laser spatial patterns, while
the difference is that the former does not contain the temporal
term, and the latter is a set of spatiotemporal equations. Hence,
for the analysis of spatial characteristics of laser transverse pat-
terns, it is more common to solve the Helmholtz equation,

∇2Eþ k2E ¼ 0; (4)

where ∇2 is the Laplacian operator, E refers to the light field,
and k ¼ 2π∕λ is the light-wave number.

3.1 Eigenmodes of Helmholtz Equation

The Gaussian beam is a special solution of the Helmholtz
equation under gradually varying amplitude approximation,
which can describe the properties of laser beams well.96 The
Helmholtz equation can then be solved for several structured
laser beams based on the Gaussian beam. First and foremost,
by solving the Helmholtz equation in the paraxial form, i.e.,
the paraxial wave equation, the well-known HG and LG modes
can be solved in Cartesian coordinates and cylindrical coordi-
nates, respectively, as shown in Figs. 3(a)–3(b).162,163 The IG
modes are also an important family of orthogonal solutions
to the paraxial wave equation, which represents a continuous
transition from LG to HG modes, as shown in Fig. 3(c).164–166

Another set of solutions to the Helmholtz equation in free space,

when solved in cylindrical coordinates, is the Bessel modes, as
shown in Fig. 3(e).92,167,168 If solving the Helmholtz equation in
elliptical cylindrical coordinates, Mathieu–Gauss beams can be
obtained, as shown in Fig. 3(d).169–171 Mathieu–Gauss beams are
also one class of “nondiffracting” optical fields, which are a
variant of the superposition of Bessel beams. Therefore, they
have a similar capability of self-reconstruction after an opaque
finite obstruction. Another important solution to the paraxial
wave equation is the Airy beam, as shown in Fig. 3(f).172,173

Similar to the Bessel modes, Airy beams exhibit unique proper-
ties of self-acceleration, nondiffraction, and self-reconstruction.
Next, when solving the Helmholtz equation in parabolic
coordinates, parabolic beams can be obtained, as shown in
Fig. 3(g).160 Their transverse structures are described by parabolic
cylinder functions, and contrary to Bessel or Mathieu beams,
their eigenvalue spectra are continuous. Any nondiffracting beam
can be constructed as a superposition of parabolic beams, since
they form a complete orthogonal set of solutions of the
Helmholtz equation. Based on parabolic beams, a new family
of vector beams that exhibit novel properties is explored, i.e.,
parabolic-accelerating vector beams, as shown in Fig. 3(h).161

This set of beams obtains the ability to freely accelerate along
parabolic trajectories. In addition, their transverse polarization
distributions only contain polarization states oriented at exactly
the same angle, but with different ellipticity. To sum up, the
above-solved patterns we introduced are the eigenmodes of
Helmholtz equations, with some examples shown in Fig. 3.

3.2 Eigenmodes Superposition Theory

For eigenmode superposition theory, it was found that the LG
mode can be generated by coherent superposition of the HG
modes as early as 1992,90 as shown in Fig. 4(a). It can be con-
veniently understood by illustrating the above basic modes on
a Bloch sphere, analogous to the Poincaré sphere (PS) for
polarization, but for spatial modes. For example, if such a Bloch
sphere is constructed with the LGp modes, such as LG0,1 and
LG0;−1 on the poles, then the equator will represent superposi-
tions of such beams: the HG modes.179 Due to the fact that these
set of modes form an infinite basis, it allows one set of modes to
be represented in terms of the other. Using relations between
Hermite and Laguerre polynomials,90,180

Xmþn

k¼0

ð2iÞkPðn−k;m−kÞ
k ð0ÞHnþm−kðxÞHkðyÞ

¼ 2mþn ×

� ð−1Þmm!ðxþ iyÞn−mLn−m
m ðx2 þ y2Þ for n ≥m

ð−1Þnn!ðx− iyÞm−nLm−n
m ðx2 þ y2Þ for m> n

;

(5)

Pðn−k;m−kÞ
k ð0Þ ¼ ð−1Þk

2kk!
dk

dtk
½ð1 − tÞnð1þ tÞm�jt¼0; (6)

where Hkð·Þ and Ln−m
m ð·Þ are Hermite and Laguerre polyno-

mials, respectively, then LG modes could be represented in
terms of superpositions of HG modes as181

LGp;�lðx; y; zÞ ¼
Xmþn

K¼0

ð�iÞKbðn;m;KÞ · HGmþn−K;Kðx; y; zÞ;

(7)

Fig. 3 Basic types of transverse patterns. (a) HG beam. (b) LG
beam. (c) IG beam. (d) Mathieu beam. (e) Bessel beam. (f) Airy
beam. (a)–(f) are adapted from Ref. 42. (g) Parabolic beam.
Adapted from Ref. 160. (h) Parabolic-accelerating vector beam.
Adapted from Ref. 161.
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Fig. 4 Multiple types of transverse patterns after superposition. (a) Examples of the LG modes
superposed of the HG modes. Adapted from Ref. 50. (b) HLG modes in PS. Adapted from
Ref. 174. (c) The intensity distribution of HLG31 modes with different values of α. Adapted from
Ref. 175. (d) The intensity distribution of even odd IG mode with p ¼ 5 and m ¼ 3, and the
HIG mode generated by the corresponding superposition when ε ¼ 0 → ∞. Adapted from
Ref. 176. (e) The vortex SU(2) geometric modes. Adapted from Ref. 177. (f) The intensity and
phase distribution of SHEN modes for ðn;mÞ ¼ ð0,6Þ. Adapted from Ref. 178.
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bðn:m;KÞ ¼
�ðN − KÞ!K!

2Nn!m!

�
1∕2 1

K!
dK

dtK
½ð1 − tÞnð1þ tÞm�jt¼0;

(8)

where l ¼ m − n, p ¼ minðm; nÞ, and N ¼ mþ n. This leads
to an alternative description of light fields through the perspec-
tive of mode superposition, particularly useful in the description
of beams with a transverse profile that is invariant during propa-
gation. For the mutual superposition and conversion of HG
and LG eigenmodes, Abramochkin and Volostnikov in 2004 in-
troduced a parameter α to unify them.182 Such beams with more
universality are called generalized Gaussian beams or Hermite–
Laguerre–Gaussian (HLG) beams. 41,175,182,183 The expression of
HLG beam is as follows:

HLGn;mðr; zjαÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N−1n!m!
p exp

�
−π jrj

2

w

�
HLn;m

�
rffiffiffi
π

p
w
jα
�

× exp

�
ikzþ ik

r2

2R
− iðmþ nþ 1ÞΨðzÞ

�
;

(9)

where HLn;mð•Þ are Hermite–Laguerre (HL) polynomials, r ¼
ðx; yÞT ¼ ðr cos ϕ; r sin ϕÞT, RðzÞ ¼ ðz2R þ z2Þ∕z, kw2ðzÞ ¼
2ðz2R þ z2Þ∕zR, ΨðzÞ ¼ arctanðz∕zRÞ, and zR is the Rayleigh
range. It was found that when α ¼ 0 or π∕2, the mode
HLGn;m will be reduced to HGn;m or HGm;n mode. When α ¼
π∕4 or 3π∕4, the mode HLGn;m will be reduced to LGp;�l mode
½p −minðm; nÞ; l ¼ m − nÞ�. For other α, the mode HLGn;m is
displayed as the beam distribution of multi-phase singularities.
Take HLG3,1 mode as an example, when α ¼ 0, π∕4, and π∕8,
the mode HLG3,1 could be reduced to HG31, LG12, and mode
with multi-phase singularities, as shown in Fig. 4(c).175 Since
HLG modes are able to unify HG modes and LG modes, it
was mapped in the PS to show the relationship among HLG,
HG, and LGmodes.174 As shown in Fig. 4(b), the poles represent
the high-order LG modes with opposite topological charges,
and the equator represents the high-order HG modes, while the
mode between the poles and the equator represents the transi-
tional high-order HLG modes.

On the basis of HLG modes, analyzing its coherent superpo-
sition can obtain a high-dimensional complex light field in a
coherent state, whose typical type is SU(2) mode. The SU(2)
mode appears when the laser mode undergoes frequency degen-
eracy with a photon performing as an SU(2) quantum coherent
state coupled with a classical periodic trajectory,174,177,184,185

which contains both spatially coherent wave packets and geo-
metric ray trajectories, as shown in Fig. 4(e). Taking the HLG
mode as the basic mode of SU(2) coherent state, the superposed
SU(2) mode is expressed as174

jψN;P;Q
n;m:l i ¼

1

2N∕2

XN
K¼0

eiKϕ

�
N
K

�1
2jψnþQK;m;l−PKi; (10)

where ϕ is the phase term, and P∕Q (P and Q are coprime in-
tegers) is the ratio of the distance between the transverse mode
and longitudinal mode leading to frequency degeneracy, i.e., the
transverse mode and longitudinal mode of various eigenmodes
should meet the coherent superposition condition.

Another similar superposition of the IG modes can form
patterns with multi-singularity, named the helical IG (HIG)
modes.186–188 HIG modes are obtained by coherent superposition
of even and odd IG modes, whose expression is

HIG�
p;m ¼ IGe

p;mðξ; η; εÞ � iIGo
p;mðξ; η; εÞ; (11)

where � is the direction of the vortex; p and m are the orders of
the IG mode; o and e represent the odd mode and the even
mode, respectively; ε is the ellipticity parameter, indicating
the change degree of ellipticity. ξ and η are elliptic coordinates;
and IGe;o

p;mð·Þ represent the expression of IG modes.165 When
ε → 0, IGe;o

p;m modes could be reduced to LGp:l modes with
l ¼ m and p ¼ 2nþ l. When ε → ∞, IGe;o

p;m modes could be
reduced to HGnx:ny modes with nx ¼ m − 1 and ny ¼
p −mþ 1. Therefore, for ε ¼ 0 → ∞, the HIG modes com-
posed of even and odd modes show specific distribution
changes, shown in Fig. 4(d).176

Comparing HLG and HIG modes, it could be found that they
all possess phase singularities with corresponding spatial distri-
butions for differently composed HG and LG modes. The above
HG, LG, HLG, and HIG modes belong to the general family
of structured Gaussian modes, also known as the singularities
hybrid evolution nature (SHEN) modes.178 The model expres-
sion of SHEN modes is

SHENn;mðx; y; zjβ; γÞ ¼
XN
K¼0

eiβKbðn;m; KÞ;

•

( ð−iÞKIGe
N;N−Kðx; y; zjε ¼ 2∕tan2 γ; for ð−1ÞK ¼ 1

ð−iÞKIGo
N;N−Kþ1ðx; y; zjε ¼ 2∕tan2 γ; for ð−1ÞK ≠ 1

:

(12)

When β ¼ �π∕2, SHEN modes could be reduced to HIG
modes. When γ ¼ 0, SHEN modes could be reduced to HLG
modes. When ðβ; γÞ ¼ ð0,0Þ or ðπ; 0Þ, SHEN modes could be
reduced to HG modes. When ðβ; γÞ ¼ ð�π∕2,0Þ, SHEN modes
could be reduced to LG modes. Therefore, SHEN modes can
uniformly describe HG, LG, HIG, and HLG modes. In addition,
the PS could be applied to define the SHEN sphere to describe
these modes, as shown in Fig. 4(f).178

It can be seen that the above patterns are derived from the
direct coherent superposition of the basic modes. The beam
generated after superposition can be regarded as a new kind
of eigenmodes with single-frequency operation. If performing
coherent superposition between these eigenmodes, diverse and
complex structured laser beam patterns could be generated.
Moreover, in a practical resonator, if multiple modes interact
coherently, the coupling of frequency and phase will be formed
spontaneously to achieve TML. The principle of the TML
effect97–101 includes frequency locking and phase locking. The
total electric field of a beam in the coherent superposition state
can be given as99

Etot ¼
X
m;n

am;nXGm;nð·Þ

� exp
�
iϕm;n þ ikzþ ik

x2 þ y2

RðzÞ − iqψðzÞ
�
; (13)
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where XG represents the polynomial of eigenmodes, such as
HG, LG, and IG. The subscripts m and n are the order indices
of the corresponding basic modes, am;n is the weight of each
basic mode, expð…Þ is the phase item, ϕm;n is the initial phase,
and qψðzÞ is the Gouy phase.

The spatial pattern is analyzed by superimposing the electric
field of multiple modes with the locking phase, including the
Gouy phase.189 Moreover, with the assistance of the inherent
nonlinearity of the laser cavity, the frequencies of the composed
modes are possible to be pulled to the same value,87–89 and then
the total electric field can be expressed as

Etotðx; y; zÞ ¼ exp

�
i
ω

c
zþ i

ω

c
x2 þ y2

RðzÞ − iqψðzÞ
�

·
X
m;n

am;nXGm;nð·Þ � expðiϕm;nÞ; (14)

where ω is the averaged optical frequency, whose derivation is
as follows:8><>:ω ¼ ω0 þ

P
m;n

am;nΔωnP
m;n

am;n

Δωn ¼ ωn − ω0 ¼ cðk2xþk2yÞ
2kz

: (15)

Here, ω0 is the optical frequency of the fundamental trans-
verse mode, Δωn is the frequency spacing between the nth
mode and the fundamental mode, c is the velocity of light,
kx ¼ πn∕lx, ky ¼ πn∕lx, kz ¼ 2π∕λ, and lx and ly are the sizes
of the cavity in the x and y directions, respectively. Along with
the locking of frequencies, the parameters of RðzÞ and index of
ψðzÞ should also be an averaged one to help with the locking of
the total phases. The cooperatively frequency-locked multimode
regime, in which at least two transverse modes contribute sig-
nificantly to the output field, and lock to a common frequency
with which they oscillate in a synchronized way. The locking
concerns also the relative phases of the modes, so that the output
intensity has a stationary transverse configuration. The common
oscillation frequency, cooperatively selected by the modes, cor-
responds to the average of the modal frequencies, weighted over
the intensity distribution of the modes in the stationary state.

The patterns formed by TML effect could possess phase sin-
gularities in dark points.102 Around each of these phase singu-
larities, the modulus of the electric field raises from zero in the
form of an inverted cone with a steep gradient. If performing a
closed counterclockwise loop that surrounds one of these points,
the phase of the envelope of the electric field changes by a value
equal to �2πm, where m is a positive integer. These properties
are fulfilled also in the “optical vortices” discovered by Coullet
and collaborators63 in their 2D analysis of the model.62 A major
difference is that from the fact that the vortices in Ref. 63 can be
generated in any position of the transverse plane, whereas
the singularities that appear in the stationary configurations of
a laser system are located in precisely defined positions, i.e., the
dark points.

The stable beam pattern formed by coherent superposition
through TML usually needs to meet the following conditions:
First, there should be a large value of the Fresnel number to
sustain such multi-transverse modes.85 Second, the transverse
mode spacing,ΔvT , should be small (several gigahertz or lower)
to assist nonlinear coupling in the spectral band.190 Third, the

interval between two neighboring vortices should also be
small (usually tens of micrometers) for the formation of stable
patterns.191 Fourth, a wide cavity without mechanical boundaries
is also needed.87 The patterns produced by the eigenmode
coherent superposition in the TML state include optical lattice
(OL) and OVL,86,88,89 which could be obtained in vertical-
cavity surface-emitting lasers (VCSELs)87 and solid-state la-
sers,88,89,99,192 as shown in Figs. 5(a)–5(e). In addition to coherent
superposition, incoherent superposition can also produce pat-
terns similar to OL,193,195 as shown in Figs. 4(f) and 4(g). The
incoherent superposition is to analyze the output OL pattern
through the superposition of intensities of the composed modes
alone. It is pointed out that in multi-transverse-mode lasers, the
coupling between transverse modes occurs through their inten-
sities rather than their field amplitudes, and these modes are
arranged according to the principle of transverse hole burning
to maximize energy coexistence and minimize intensity distri-
bution overlap. It is found that the beam patterns generated by
incoherent superposition have higher symmetry, and there may
be no phase singularity in some dark areas of the pattern.194

We have summarized the principle of directly generating
spatially structured beams from the laser cavity, namely, the
eigenmode superposition theory. The spatial characteristics of
the spontaneous organized patterns are explained by the inter-
action and superposition of the oscillation modes. However,
with the help of some modulation devices, such as the spiral
phase plate,196–198 diaphragm,199 acousto-optic modulator,200 liquid
crystal Q-plate,201–205 J-plate,145 liquid crystal SLM,206–208 and
digital micromirror device,209–211 various spatial structure laser
beams can also be generated indirectly. There are also many
reviews40,42,43,45–47,50,212 on this part of active regulation to generate
spatially structured laser beams, and more detailed information
can be found in those reviews.

4 Spatiotemporal Beam Patterns
As for the study of structured laser pattern formation, the
traditional electromagnetic field equations including MB and
Helmholtz equations were adopted in recognition of the impor-
tance of gain and loss. In addition, the eigenmode superposition
theory makes it possible to form diverse and complex beam
patterns. When the laser oscillates simultaneously in multiple
modes and the phase difference between them is stable, the
mode locking occurs. What we talked about the spatial charac-
teristics of laser transverse modes in Sec. 3 is to study the TML
under the condition of single longitudinal mode. However,
if multiple longitudinal modes are involved, total mode locking
or spatiotemporal locking will occur,103–106 thus generating
spatiotemporal laser beams.

4.1 Spatiotemporal Mode Locking

The spatiotemporal mode locking is often realized by fiber
lasers, referring to the coherent superposition of longitudinal
and transverse modes of the laser, which allows locking
multiple transverse and longitudinal modes to create ultrashort
pulses with various spatiotemporal distributions, as shown in
Figs. 6(a1) and 6(a2). The locking of transverse and longitudinal
modes of a laser is realized by spatial filtering107 and spatiotem-
poral normal dispersion mode locking,116,117 respectively. The
spatiotemporal mode locking can be realized through the high
nonlinearity, gain, and spatiotemporal dispersion of the optical
fiber medium, as well as spectral and spatial filtering.103 These
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Fig. 5 Multiple patterns produced by coherent and incoherent superposition. (a)–(e) OVL patterns
from coherent superposition of HG, LG, and IG modes, while (a) is from VCSELs. Adapted from
Ref. 87. (b) Beam patterns from a solid-state LNP laser. Adapted from Ref. 88. (c) Beam patterns
from a solid-state Yb:CALGO laser. Adapted from Ref. 89. (d) Beam patterns from a microchip
Nd:YAG laser. Adapted from Ref. 99. (e) Beam patterns from a solid-state Pr:YLF laser. Adapted
from Ref. 192. (f)–(g) Beam patterns from incoherent superposition of the (f) LG and (g) HGmodes
in solid-state lasers. Adapted from Refs. 193 and 194.
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Fig. 6 Spatiotemporal mode-locking beam patterns. (a) Spatiotemporal mode locking through
both longitudinal and transverse modes. Adapted from Ref. 103. (a1) Transverse distributions.
(a2) Pattern, spectra, and intensity of composed modes. (a3) Schematic diagram of the cavity sup-
porting spatiotemporal mode locking. (b) Experimental regimes of spatiotemporal mode locking and
results from a reduced laser model. Adapted from Ref. 107. (c) Phase locking of the longitudinal and
transverse (TEM00 and TEM01) modes to create scanning beam. Adapted from Ref. 114.
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inseparable coupling effects can be described by the cavity
operator Ĉ as follows:107

Ĉ ¼ F̂ðx; yÞF̂ðωÞcSAðx; y; tÞP̂ðx; y; tÞ; (16)

where F̂ðx; yÞ and F̂ðωÞ are the spectral and spatial filter func-
tions, respectively, ŜAðx; y; tÞ is the spatiotemporal saturable
absorber transfer function, and P̂ðx; y; tÞ accounts for the effect
of the pulse propagation through the three-dimensional (3D)
nonlinear gain medium. P̂ includes the inseparable effects of
3D gain, such as spatiotemporal dispersion and nonlinear mode
coupling. With the composition of iterated nonlinear projection
operations, the field of spatiotemporal locking pulse can be
expressed as

Eiþ1ðx; y; tÞ ¼ ĈEiðx; y; tÞ; (17)

where the subscript of E is the round-trip number. In each round
trip, the nonlinear dissipation of Ĉ is selected from the field
certain attributes, and the saturable laser gain provides a condi-
tional (frequency and energy-limited, and spatially localized)
rescaling of the selected field.

The schematic diagram of the cavity supporting spatiotem-
poral mode locking is shown in Fig. 6(a3). The fiber ring laser
was composed by offset splicing a graded-index fiber to a few-
mode (three modes were supported) Yb-doped fiber amplifier,
which leads to spatial filtering action.107 Spatial filtering can
lock multiple transverse modes by controlling the overlap of
fields coupled to the optical fiber. Then, the self-starting mode
locking in the normal chromatic dispersion regime is achieved
using a combination of spectral filtering and intracavity nonlin-
ear polarization rotation, which is realized in the longitudinal
mode locking. Through the space–time locking of the transverse
and longitudinal modes, ultrashort pulses with special space–
time distribution can be obtained. In the process of spatiotem-
poral mode locking, the mode dispersion will affect the locking
effect, and the small mode dispersion of graded-index multi-
mode fiber is considered to be a key factor to make spatiotem-
poral mode locking possible.103 Experimental regimes of
spatiotemporal mode locking and results from a reduced laser
model are shown in Fig. 6(b).107 The reduced models predicted
how the effects of disorder, and the increased dimension of
the optimization, affect the regimes of spatiotemporal mode
locking. On this basis, it was found that spatiotemporal mode
locking can also be realized in multimode fiber lasers with
large mode dispersion, in which the intracavity saturable
absorber plays an important role in offsetting the large mode
dispersion.110 Spatiotemporal mode locking at a fiber laser using
a step-index few-mode thulium fiber amplifier and a semicon-
ductor saturable absorber was also reported.113 The former real-
izes spatial filtering to lock the transverse mode, and the latter
plays a role in longitudinal mode locking.

Therefore, spatiotemporal mode locking is affected by gain,
spatial filtering, optical nonlinear interaction between saturable
absorbers, and optical fiber medium, as well as the coupling be-
tween temporal and spatial degrees of freedom.107 Apart from
multimode fiber lasers, in all few-mode fiber, it is realizable
to obtain spatiotemporal mode locking to create bound-state
solitons.109 In addition, the scanning output beam can be gener-
ated by spatiotemporal locking of the laser mode,114 as shown in
Fig. 6(c). The phase locking of the longitudinal and transverse
(TEM00 and TEM01) modes is simply obtained by tilting the

pump laser end mirror to induce time-varying pulse coupling
in a photonic crystal fiber for subsequent generation of fre-
quency-shifted Raman solitons. The introduced spatial oscilla-
tions of the output beam lead to modulation of the coupling
efficiency of the fiber and effectively induces wavelength
sweeping.

4.2 Spatial Modulation of Mode-Locked Laser Pulses

The spatiotemporal mode-locked pulses directly produced by
fiber lasers are often irregularly distributed. Another method
to generate spatiotemporal beams with regular and complex
distribution is to use the pulse-shaping device based on SLM.
The designed pulse shaper is usually applied to shape the input
femtosecond laser to obtain the specific spatiotemporal pattern.
As shown in Fig. 7(a), the spatiotemporal optical vortices have
been proved to be generated using spiral phase in the pulse
shaper.118 Suppose an optical field in the spatial frequency–
frequency domain (kx − ω) is given by gRðrÞ. After a spiral
phase of e−ilθ is applied, a 2D Fourier transform gives the field
in the spatial-temporal ðx; tÞ domain as follows:

Gðρ;ϕÞ ¼ FTfgRðrÞe−ilθg ¼ 2πð−iÞle−ilθHlfgRðrÞg; (18)

where ðr; θÞ are the polar coordinates with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ ω2

p
and

θ ¼ tan−1ðω∕kxÞ, and ðρ;ϕÞ are the Fourier conjugate polar
coordinates with ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ t2

p
and θ ¼ tan−1ðx∕tÞ. Here,

HlfgRðrÞg ¼ R∞
0 rgRðrÞJlð2πρrÞdr and Jl is the Bessel func-

tion of the first kind.
Therefore, starting from chirped mode-locked pulses, a

diffraction grating and cylindrical lens disperse frequencies
spatially and act as a time-frequency Fourier transform. Then,
a spiral phase on the SLM and an inverse Fourier transform
by recollecting dispersed frequencies with a grating-cylindrical
lens pair form the chirped spatiotemporal vortex. The full elec-
tric field is presented as

Eðρ;ϕÞ ¼ Gðρ;ϕÞ expðikzz − iωtÞ: (19)

After generating the spatiotemporal vortex pulse, it travels
through an afocal cylindrical beam expander and stretches in
the direction of the vortex line. It is reported that the stretched
spatiotemporal vortex pulse could transform into a toroidal vor-
tex pulse through a conformal mapping system formed by two
SLMs,126 as shown in Fig. 7(b). In addition, the spatiotemporal
optical vortex was also demonstrated to be generated from a
light source with partial temporal coherence and fluctuating
temporal structures.119 Similarly, through a phase mask in SLM,
interesting wave packets, such as diffraction-free pulsed beams
with arbitrary 1D transverse profiles without suffering power
loss were generated.121 The basic concept [illustrated in Fig. 7(c)]
combines spatial-beam modulation and ultrafast pulse shaping
and is related to the so-called 4f-imager used to introduce
spatiotemporal coupling into ultrafast pulsed beams. The modu-
lated beam is reflected back, and the pulse is reconstituted by the
grating to produce the spatiotemporal light sheet. Additionally,
it applied reflective annular mask in a pulse shaper to generate a
spatiotemporal Bessel wave packet,122 as shown in Fig. 7(d).
Since the mask has an annular shape, it is then possible to obtain
a spatiotemporal Bessel beam at its waist by doing the inverse
Fourier transform in the space and time domains of the signal
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Fig. 7 Spatiotemporal beam patterns generated by a pulse shaper. (a) Generation (a1) and
measurement (a2) of the spatiotemporal vortex. Adapted from Ref. 118. (b) Generation of the
spatiotemporal toroidal vortex. Adapted from Ref. 126. (c) Generation of spatiotemporal Airy
beams. Adapted from Ref. 121. (d) Generation of spatiotemporal Bessel beams. Adapted from
Ref. 122. (e) Schematic of a device capable of mapping an input vector spatiotemporal field onto
an arbitrary vector spatiotemporal output field. Adapted from Ref. 125.
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reflected by the mask. This analysis has revealed that these
beams are produced by a superposition of plane waves of differ-
ent optical frequencies and directions of propagation traveling at
the same group velocity along the z axis. With all plane waves
added in the same phase, a nondiffraction spatiotemporal beam
can be generated through spatiotemporal coupling.124

In addition, a device for generating an arbitrary vector spa-
tiotemporal light field with arbitrary amplitude, phase, and
polarization at each point in space and time was designed.125

As shown in Fig. 7(e), the laser output with two orthogonal
polarizations propagates through the pulse shaper to redistribute
between the space domain and the time domain. The shaped
light propagates through the multi-plane light conversion
(MPLC) device and is converted to different HG modes at
the output port of the MPLC. Then, arbitrary spatiotemporal
beams can be generated through the design and combination
of HG beams at different times. These methods of transforming
spatiotemporal beams through optical devices, such as pulse
shapers, gratings, and lenses can effectively generate spatiotem-
poral beams with specific structures. They can be used in the
fields of imaging, optical communication, nonlinear optics,
particle manipulation, and so on.

5 Structured Beam Patterns Generated by
Nonlinear Processes

For the booming research on the spatial and spatiotemporal
properties of structured laser beams reviewed in the above sec-
tions, investigations are based on beams at a single wavelength.
Currently, the nonlinear transformation technology for funda-
mental mode Gaussian beams is very mature. The combination
between structured laser beams and nonlinear transformation on
the transverse pattern variation has been of great interest in
recent years. The SFG,127–130 SHG,131–140 FWM,141,142 and other
frequency upconversion143–145 methods have been studied in the
nonlinear process of structured laser beams. The variation of
OAM in the nonlinear process are one of the focuses of these
studies. In this section, the nonlinear process of structured laser
beams is introduced from two aspects: external-cavity modula-
tions and intracavity transformation. We will first present the
physical mechanisms.

Generally, the nonlinear transformation of structured patterns
is based on the nonlinear wave equation,

∂E
∂z ¼ iω

2ε0cn
PNLeiΔkz; (20)

where E is the electric field, ω is the optical frequency, PNL is
the nonlinear polarization, and Δk is the wave vector difference
between the polarized wave and the incident light. The nonlin-
ear process in the multi-wave mixing process can be obtained
by solving the coupled wave equations. Generally speaking, for
the n’th-order nonlinear effect, nþ 1 nonlinear coupled wave
equations corresponding to different frequencies can be listed.
By simultaneously solving the nþ 1 coupled wave equations,
the electric field strengths of these different frequencies of light
can be obtained, thereby leading to the law of mutual conversion
of energy between these light fields. In the nonlinear transfor-
mation of structured patterns, the second-order nonlinear
effect is the main part, including SFG and SHG. Consider three
monochromatic plane waves E1, E2, and E3 propagating in

the z direction with frequencies ω1, ω2, and ω3, respectively.
Considering only the second-order nonlinear effect, the second-
order nonlinear polarization can be written as8><>:

Pð2Þðω1Þ ¼ 2ε0χ
ð2Þð−ω1;ω3;−ω2Þ · E3E�

2

Pð2Þðω2Þ ¼ 2ε0χ
ð2Þð−ω2;ω3;−ω1Þ · E3E�

1

Pð2Þðω3Þ ¼ 2ε0χ
ð2Þð−ω3;ω1;ω2Þ · E1E2

; (21)

and we can get the coupled wave equations for three-wave
interaction as8>>><>>>:

dE1ðzÞ
dz ¼ iω1

cn1
χð2Þð−ω1;ω3;−ω2Þ · E3ðzÞE�

2ðzÞeiΔkz
dE2ðzÞ
dz ¼ iω2

cn2
χð2Þð−ω2;ω3;−ω1Þ · E3ðzÞE�

1ðzÞeiΔkz
dE3ðzÞ
dz ¼ iω3

cn3
χð2Þð−ω3;ω1;ω2Þ · E1ðzÞE2ðzÞeiΔkz

: (22)

Then, the field intensity of a specifically structured light
beam after nonlinear transformation can be obtained by substi-
tuting the structured light field expression XG (e.g., HG, LG,
and IG) into the coupled wave Eq. (22) and solving them.

5.1 External Cavity Nonlinear Processes

External cavity pattern modulations and nonlinear interactions
are the main form of nonlinear transformation in structured laser
beams. The first research on the transformation of structured
laser beams in nonlinear optics began with the SHG of LG
modes in 1996.131 It was found that the SHG fields carry
twice the azimuthal indices of the pump, which provided
straightforward insight into OAM conservation during nonlinear
interactions at the photon level. The relationship among the
OAMs of the input l1; l2;… and output beams l was recognized
to follow the law of l ¼ l1 þ l2 þ…þ ln. That is, OAM is con-
served in the nonlinear process. As such, for SHG modes of two
photons with angular frequency ω and a single OAM, if the
OAMs are equal, it has l2ω ¼ 2lω or l2ω ¼ lω0 þ lω″,135 as shown
in Fig. 8(a). This conservation law is also applicable to frac-
tional and odd-order OAM beams.134 The generation of LG
beams with higher radial orders and IG beams through a non-
linear wave mixing process was further investigated to obtain
more complex beam patterns.130,139,140 However, in the above
studies, the characteristics of the frequency-doubled beam
patterns during propagation have hardly been mentioned. Later,
in the research of SHG modes through input LG beams with
opposite OAMs, the near- and far-field patterns show different
light field distributions,137 as shown in Fig. 8(b). In addition, for
the change of pattern transmission, a more detailed theoretical
model is proposed to describe the beam pattern transmission
and radial mode transition in the process of SHG, and the
results agree well with the simulations,145 as shown in Fig. 8(c).
Apart from the single OAM state, phase structure transfer in
FWM142 and sum frequency129 processes were also investigated
for the input beams possessing coherent superposition of LG
beams.

As shown in Fig. 8(d), there are two sets of patterns and
propagation behaviors: (1) one pump beam carries OAM super-
position mode with another pump beam carrying a single OAM
mode and (2) both pump beams carry OAM superposition
modes. The relationship between the SFG beam and the pump
beam is as follows:129
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Fig. 8 External cavity nonlinear process of structured laser beams. (a) Experimental setup and
results showing the OAMs of the input and output beams are equal. Adapted from Ref. 135.
(b) Experimental setup and results showing different SHG pattern distributions in near and far
fields. Adapted from Ref. 137. (c) SHG patterns with beam pattern transmission and radial mode
transition. Adapted from Ref. 145. (d) Experimental setup and results of SFG modes with input
beams possessing coherent superposition of LG beams. Adapted from Ref. 129.
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ESFG ∝

8>>>>><>>>>>:

ðLGl
0 þ eiθLG−l

0 Þ � LGl
0 → LG2l

0 þ eiθLG0
l

ðLGl1
0 þ eiθLG−l2

0 Þ � LGl2
0 → LGl1þl2

0 þ eiθLG0
l2

ðLGl
0 þ eiθ1LG−l

0 Þ � ðLGl
0 þ eiθ2LG−l

0 Þ → LG2l
0

þeiðθ1þθ2ÞLG−2l
0 þ ðeiθ1 þ eiθ2ÞLG�0

l

;

(23)

where LGl
0 represents the standard LG mode, and θ is the phase

item. It is worth noting that LG�0
l is similar to the standard LG

mode LG0
l , but differs by a factor of 2 in the Laguerre polyno-

mials. This difference makes the intensity in the radial direction
of the SFG beam decrease much more rapidly than the standard
LG mode.

5.2 IntraCavity Nonlinear Processes

All these above studies on nonlinear processes were explored on
the basis of external cavity structured laser pattern generation.
Usually, in these studies, structured beams were first generated
with the help of modulation devices (such as SLM), and then
frequency conversion was carried out. For patterns generated
through intracavity nonlinear process, some studies showed new
properties. In Fig. 9(a1), it shows a frequency-doubled cavity
that converts the infrared fundamental frequency of Nd:YAG
(λ ¼ 1064 nm) to the second-harmonic green (λ ¼ 532 nm)
through an intracavity nonlinear crystal (KTP).146 The concept
of the laser design exploits a unique feature of OAM coupling to
linear polarization states. The resonant mode morphs from a
linearly polarized Gaussian-like enveloped beam at one end of
the cavity to an arbitrary angular momentum state at the other.
A polarizer was required for selection of the horizontal polari-
zation state before the J-plate, and the polarization of the light
traversing the J-plate was controlled by simply rotating the
J-plate itself. Various measured states from the laser, displayed
on a generalized OAM sphere are shown in Fig. 9(a2). The tran-
sition patterns from one to the other allow visualization of lasing
across vastly differing OAM values as superpositions with two
concentric rings. Then, in a digital laser for on-demand intra-
cavity selective excitation of second-harmonic higher-order
modes, an SLM used for structured beam generation also acted
as an end mirror of the laser resonator,147 as shown in Fig. 9(b1).
After SHG modes passed through the nonlinear KTP crystal,
it was found that the near-field spatial intensity profiles of the
SHG LG modes in Fig. 9(b3) are similar to the intensity profile
of the fundamental LG pump modes in Fig. 9(b2). But at the far
field, the spatial intensity profiles of the SHG LG modes in
Fig. 9(b4) are different from the fundamental pump modes
because there is an added central intensity maximum, while in
another intracavity SHG generation laser, the spatial distribu-
tions of the SHG beams are almost the same as that of the
pump beams,148 as shown in Figs. 9(c2)–9(c3). For some SHG
patterns, the topological charge was found to have doubled, as
shown in Fig. 9(c4). The generation of high-order modes was
obtained by the off-axis displacement of the output coupling
mirror and the SHG process was through the intracavity BBO
crystal, as shown in Fig. 9(c1). In addition, investigations on the
SHG structured laser beams in the TML states have been carried
out.149 Through a sandwich-like microchip laser composed of
Nd:YAG, Cr:YAG, and LTO crystals in Fig. 9(d1), complex
and diverse structured beams in TML states and their SHG
beams were generated by altering the pumping parameters.

As shown in Figs. 9(d2)–9(d3), a set of TML beams composed
of the HG and LG modes and their SHG beams were obtained
experimentally and agreed well with the theoretical simulation
model as follows:

ESHGðr;φÞ ∝ ½XGm1;n1ðr;φÞ þ eiϕXGm2;n2ðr;φÞ�
× ½XGm1;n1ðr;φÞ þ eiϕXGm2;n2ðr;φÞ�

¼ XG2
m1;n1ðr;φÞ þ 2eiϕXGm1;n1ðr;φÞXGm2;n2ðr;φÞ

þ ei2ϕXG2
m2;n2ðr;φÞ: (24)

The complex transverse patterns in the TML states were
composed of different basic modes with different weight coef-
ficients and different locking phases, which makes the spatial
information of the fundamental frequency mode and its SHG
beam quite abundant.

In summary, combining the nonlinear transformation with
the study of structured laser beams, the beam patterns are en-
dowed with richer spatial information characteristics. For exter-
nal cavity nonlinear process of structured laser beams, the law of
OAM conservation during nonlinear interactions of LG beams
was found. For SHG and SFG modes of the special LG beams,
the propagation of the output beam patterns from near-field to
far-field shows varying spatial characteristics. For intracavity
nonlinear processes of structured laser beams, much more com-
plex and diverse beam patterns could be obtained. In general, as
a new research field of structured laser beams, the nonlinear pro-
cess of beam shaping can be widely used in 3D printing, optical
trapping, and free-space optical communication. In addition, as
reviewed in Secs. 3 and 4, since there are many techniques for
generating spatial and spatiotemporal structured beams. By ap-
plying nonlinear transformation technology, it is expected that
the future of structured laser beams will have broader develop-
ment prospects.

6 Conclusions and Perspectives
This paper is dedicated to reviewing the evolution of the spatial
patterns of structured laser beams, covering the spontaneous
organization of patterns described by relative equations and
the advancements of on-demand transformations of laser pat-
terns. Taking the spatial pattern as the core, we first reviewed
the theoretical basis of laser transverse mode formation and em-
phasized its electromagnetic field properties and the dynamic
mechanisms described by the related equations. Then, we ana-
lyzed the latest developments in the spatial characteristics of
structured laser beam patterns through eigenmode superposition
theory. With the coherent and incoherent superposition of laser
eigenmodes, complex and diverse spatial patterns of structured
laser beams can be generated. These studies on the spatial char-
acteristics of structured laser beams are often conducted under
the premise of a single longitudinal mode. However, if multiple
longitudinal modes are involved, the time dimension needs to be
accounted for. Therefore, we later reviewed the research on
spatiotemporal structured laser beams, including direct genera-
tion by spatiotemporal mode-locking effect in fiber lasers and
indirect regulation through the pulse shaper based on SLM.
Moreover, it was found that the structured laser patterns could
be endowed with richer spatial information characteristics
through nonlinear conversion processes. We finally reviewed
various nonlinear processes of structured laser patterns ranging
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Fig. 9 Intracavity nonlinear process of structured laser beams. (a) Experimental setup and results
to generate intracavity frequency-doubled LG beams. Adapted from Ref. 146. (b) Experimental
setup and results showing near- and far-field SHG LG beams. Adapted from Ref. 147.
(c) Experimental setup and results showing SHG optical vortices. Adapted from Ref. 148.
(d) Experimental setup and results showing SHG modes of structured laser beams in the TML
states. Adapted from Ref. 149.
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from external cavity modulations to intracavity transformation
comprehensively. Looking back over these 10 years, we can
see how much our research and understanding of laser spatial
features have advanced from classical to quantum,213 especially
since the discovery of OAM in the 1990s. However, the study of
structured laser beams may just be in its early stages. We still
have many unexplored novel phenomena and theories. There is
potential for new and improved applications based on these
spatial and temporal properties of laser modes, which could
facilitate further research on novel laser spatial structures.
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